

AUDITOR – GA 687367

Advanced Multi-Constellation EGNSS Augmentation and Monitoring Network and its

Application in Precision Agriculture

D3.3 Version 1.1

GNSS receiver module validation

Contractual Date of Delivery: M21

Actual Date of Delivery: M30 (16-07-2018)

Editor: Microsoft Office User

Author(s): Microsoft Office User, Javier Arribas, Esther López, Jacobo

Dominguez, Alberto García Rigo, Manuel Hernández-Pajares.

Work package: WP3 – GNSS receiver module

Security: PU

Nature: R

Version: 1.1

Total number of pages: 40

Abstract:

This document reports the GNSS receiver module validation performed in WP3 of Project

AUDITOR.

Ref. Ares(2018)3801063 - 17/07/2018

AUDITOR D3.3 Version 1.1

 Page 2 (40)

Document Control

Version Details of Change Author Approved Date

1.0 Document finalized CF EL 16/07/18

1.1 Minor format issues corrected JD EL 17/07/18

AUDITOR D3.3 Version 1.1

 Page 3 (40)

Executive Summary

AUDITOR’s targeted receiver module features a dual-band (one centered at 1176.45 or 1227.60 MHz

and the other at 1575.42 MHz) GNSS receiver with the ability to process GPS L1 C/A, Galileo E1b/c, GPS

L2C and Galileo E5a signals, with operation modes selectable from single and dual frequencies, GPS-

only, Galileo-only or multi-constellation, in any of the possible combinations of GNSS signals and with

8 channels per signal. For the presented proof-of-concept, the targeted sampling rate was 8 MSps.

For each visible satellite, the system must provide time-tagged measurements of pseudorange (in m),

carrier phase (in cycles) or phase range (in m), Doppler shift (in Hz) or pseudorange rate (in m/s),

received signal strength (in dB-Hz), dilution of precision parameters, raw navigation data, correlators'

output, position and velocity, GPS Time, Galileo Time, UTC time and uncertainties, channel status

(including acquisition/tracking stage, PRN number and C/N$_0$), almanac, ephemeris, and annotation

of observables and navigation data in RINEX 3.03 file format, as well as in other output formats for

real-time streaming of GNSS products such as RTCM v3.2 and NMEA-0183 messages.

The receiver must allow for independent configuration of frequency, constellation, PVT and starting

mode, including cold and warm starts, independent channel configuration, user-configurable tracking

of pilot and data components, configurable integration time, and configurable rate for observables

(from 1 kHz to the maximum coherent integration time) and position annotation (up to 10 Hz).

In order to facilitate the development, debugging and testing of the GNSS receiver, the prototype was

packaged in a convenient plastic box, implementing suitable standard connectors for power supply,

Ethernet communications, USB and JTAG programming interfaces, among other debugging features.

All the GNSS receiver components, including an input antenna RF connector, a bias-T for active antenna

feeding, an L-band passive splitter/combiner, LNAs, and power connectors and switches, are available

in a portable device, allowing easier handling and transportation of the prototype. The box was

manufactured using a custom design and a 3D printer (see Figure 1).

This document reports the validation procedures applied to the developed prototype.

AUDITOR D3.3 Version 1.1

 Page 4 (40)

Figure 3.1 Picture of AUDITOR’s prototype

AUDITOR D3.3 Version 1.1

 Page 5 (40)

Authors

Partner Name e-mail

CTTC Carles Fernández-Prades cfernandez@cttc.cat

 Javier Arribas jarribas@cttc.cat

ACORDE Esther López esther.lopez@acorde.com

 Jacobo Domínguez jacobo.dominguez@acorde.com

 UPC Alberto García Rigo alberto.garcia.rigo@upc.edu

 Manuel Hernández-Pajares manuel.hernandez@upc.edu

mailto:cfernandez@cttc.cat
mailto:jarribas@cttc.cat
mailto:esther.lopez@acorde.com
mailto:jacobo.dominguez@acorde.com
mailto:alberto.garcia.rigo@upc.edu
mailto:manuel.hernandez@upc.edu

AUDITOR D3.3 Version 1.1

 Page 6 (40)

Table of Contents

Document Control .. 2

Executive Summary .. 3

Authors ... 5

Table of Contents ... 6

List of Tables ... 6

List of Figures .. 7

List of Acronyms and Abbreviations ... 8

1. Analysis of indicators ... 9

2. Validation of GNSS RF Front-End Module ..22

3. Validation of the software-defined GNSS receiver ..23

3.1 Signal Tracking ..23

3.2 Tracking pull-in test...23

3.2.1 Test results ..23

3.3 Tracking steady-state test ...27

3.3.1 CRB for the Code Delay ...27

3.3.2 Test results ..29

4. Analysis of main Key Performance Indicators ...33

5. Conclusion ..36

List of Tables

Table 1.1: Indicators analysis .. 9

Table 3.1: Tracking pull-in test flags .. 23

Table 3.2: Tracking steady-state test .. 29

Table 4.1: KPI 1 - Accuracy .. 33

Table 4.2: KPI 2 - Availability ... 33

Table 4.3: KPI 3 - Efficiency.. 33

Table 4.4: KPI 4 - Interoperability .. 34

Table 4.5: KPI 5 - Repeatability .. 34

AUDITOR D3.3 Version 1.1

 Page 7 (40)

List of Figures

Figure 3.1: Tracking pull-in results for CN0= 45 dB-Hz using PLL/DLL bandwidths of 35 Hz and 1.5

Hz respectively. ... 25

Figure 3.2: Tracking pull-in results for CN0= 42 dB-Hz using PLL/DLL bandwidths of 35 Hz and 1.5

Hz respectively. ... 25

Figure 3.3: Tracking pull-in results for CN0= 39 dB-Hz using PLL/DLL bandwidths of 35 Hz and 1.5

Hz respectively. ... 26

Figure 3.4: Tracking pull-in results for CN0= 36 dB-Hz using PLL/DLL bandwidths of 35 Hz and 1.5

Hz respectively. ... 26

Figure 3.5: Tracking pull-in results for CN0= 33 dB-Hz using PLL/DLL bandwidths of 35 Hz and 1.5

Hz respectively. ... 27

Figure 3.6: Tracking Doppler estimation error and variance for PLL/DLL bandwidths of 5 Hz and

0.25 Hz respectively. ... 30

Figure 3.7: Accumulated carrier phase estimation error and variance for PLL/DLL bandwidths of

5 Hz and 0.25 Hz respectively. ... 31

Figure 3.8: Code Phase estimation error and variance for PLL/DLL bandwidths of 5 Hz and 0.25

Hz respectively. ... 31

Figure 3.9: Measured RMSE and corresponding Cramér-Rao Bound for the Code Delay

estimation. The PLL filter was set to 1 Hz for Tint=20 ms and 10 Hz for Tint=1 ms. . 32

AUDITOR D3.3 Version 1.1

 Page 8 (40)

List of Acronyms and Abbreviations

Term Description

ADC Analog to Digital Converter

CEP Circular Error Probability

TTFF Time To First Fix

DAC Digital to Analog Converter

DRMS Distance Root Mean Square

FE Front End

FGPA Field Programmable Gate Array

FMC FPGA Mezzanine Card

GIS Geographic Information System

GNSS Global Navigation Satellite Systems

IF Intermediate Frequency

I&Q Inphase & Quadrature

JSON JavaScript Object Notation

KML Keyhole Markup Language

LNA Low Noise Amplifier

MRSE Mean Radial Spherical Error

NMEA National Marine Electronics Association

PGA Programmable Gain Amplifier

RINEX Receiver Independent Exchange Format

RTCM Radio Technical Commission for Maritime Services

SEP Spherical Error Probable

SPI Serial Peripheral Interface

TTFF Time To First Fix

VCO Voltage Controlled Oscillator

VHDL VHSIC Hardware Description Language

VHSIC Very High Speed Integrated Circuit

XML eXtensible Markup Language

WGS84 World Geodetic System 1984

AUDITOR D3.3 Version 1.1

 Page 9 (40)

1. Analysis of indicators

This section summarizes the status of the GNSS receiver’s quality indicators identified in Deliverable

1.3.

Table 1.1: Indicators analysis

Indicator Requirements Current status
Pass /

Fail

Definition of project’s
geographical
coordinate frame and
geodetic datum.

Position must be
expressed in an
adequate coordinate
reference system and
geodetic datum.

The World Geodetic System (WGS84)
is a standard for use in cartography,
geodesy, and navigation (including
GPS and Galileo). All computations
inside the GNSS receiver device are
referred to WGS84. Differential
systems can perform transformations
to express position in other datums.

Definition of accuracy
metrics and
procedures.

Definition of metrics for
2D and 3D positioning.

Detailed definition of
measurement
procedures.

AUDITOR accuracy metrics:
● for 2D positioning: Distance

Root Mean Square (DRMS)
and the Circular Error
Probability (CEP), in meters,
and,

● for 3D positioning: the Mean
Radial Spherical Error (MRSE)
and the Spherical Error
Probable (SEP), in meters.

Meet AUDITOR’s static
positioning accuracy
requirements.

Decimeter-level static
accuracy

Testing software implemented.

Meet AUDITOR’s
dynamic positioning
accuracy requirements.

Decimeter-level dynamic
accuracy

Testing software implemented.

24/7 service 24/7 service
The receiver delivers GNSS products
continuously for more than a week
(observed, no theoretical limit).

Typical duration of
usage session

12 hours
The receiver delivers GNSS products
continuously for more than a week
(observed, no theoretical limit).

AUDITOR D3.3 Version 1.1

 Page 10 (40)

Acquisition sensibility

Comparable to that of

professional receivers

Measurement procedures defined in
https://gnss-sdr.org/design-
forces/availability/

Tracking sensibility

Comparable to that of

professional receivers

Measurement procedures defined in
https://gnss-sdr.org/design-
forces/availability/ .

Time to First Fix

Definition of detailed
TTFF measurement
procedures in different
receiver’s status.

Cold start TTFF measurement
procedures defined ihttps://gnss-
sdr.org/design-forces/availability/
Cold start testing software has been
implemented (see https://gnss-
sdr.org/docs/tutorials/testing-
software-receiver-2/)

Warm start TTFF measurement
procedures defined ihttps://gnss-
sdr.org/design-forces/availability/
Warm start testing software has been
implemented (see https://gnss-
sdr.org/docs/tutorials/testing-
software-receiver-2/)

Hot start TTFF measurement
procedures defined TTFF
measurement procedures defined in
https://gnss-sdr.org/design-
forces/availability/
Hot start testing software has been
implemented (see https://gnss-
sdr.org/docs/tutorials/testing-
software-receiver-2/)

Reacquisition Implemented
Controlled by lock detector
parameters. See https://gnss-
sdr.org/docs/sp-blocks/tracking/

Number of parallel
channels that the
software receiver can
sustain in real time,
given the targeted
GNSS signal of each
channel and the
computational
resources available for
signal processing.

8 channels per signal 8 channels per signal

https://gnss-sdr.org/design-forces/availability/
https://gnss-sdr.org/design-forces/availability/
https://gnss-sdr.org/design-forces/availability/
https://gnss-sdr.org/design-forces/availability/
https://gnss-sdr.org/design-forces/availability/
https://gnss-sdr.org/design-forces/availability/
https://gnss-sdr.org/docs/tutorials/testing-software-receiver-2/
https://gnss-sdr.org/docs/tutorials/testing-software-receiver-2/
https://gnss-sdr.org/docs/tutorials/testing-software-receiver-2/
https://gnss-sdr.org/design-forces/availability/
https://gnss-sdr.org/design-forces/availability/
https://gnss-sdr.org/docs/tutorials/testing-software-receiver-2/
https://gnss-sdr.org/docs/tutorials/testing-software-receiver-2/
https://gnss-sdr.org/docs/tutorials/testing-software-receiver-2/
https://gnss-sdr.org/design-forces/availability/
https://gnss-sdr.org/design-forces/availability/
https://gnss-sdr.org/docs/tutorials/testing-software-receiver-2/
https://gnss-sdr.org/docs/tutorials/testing-software-receiver-2/
https://gnss-sdr.org/docs/tutorials/testing-software-receiver-2/
https://gnss-sdr.org/docs/sp-blocks/tracking/
https://gnss-sdr.org/docs/sp-blocks/tracking/

AUDITOR D3.3 Version 1.1

 Page 11 (40)

Power consumption for
a given host computer
and
computational load in
terms of number of
signals and channels
to be processed.

Power consumption < 10

W
Not measured.

Availability of profiling
tools for identifying
processing
bottlenecks and
measuring efficiency.

Allow for statistical
profiling tools.
Allow for CPU profiling
tools.
Allow for instrumenting
profiler tools.
Statistical execution
time measurement tool
available for the
supported processing
platforms.

GNSS-SDR allows for the usage of
several software profiling tools, see
http://gnss-
sdr.org/documentation/how-profile-
code for some examples. The
suggested approach consists of using
a set of freely available profiling tools
that use different techniques, in the
hope of taking advantage of their
complementary nature and obtain a
better insight about how the code is
performing.

Possibility to either use
synthetically generated
or real-life
GNSS signals.

- Implemented

Possibility to process
signals either in real
time or in post-
processing time (only
limited by the
computational capacity
of the host machine).

-

AUDITOR’s software receiver
architecture makes use of a thread-
per-block strategy and GNU Radio‘s
task scheduler, which manages a flow
graph of nodes. Each node represents
a signal processing block, whereas
links between nodes represents a flow
of data.
Under this scheme, software-defined
signal processing blocks read the
available samples in their input
memory buffer(s), process them as
fast as they can, and place the result
in the corresponding output memory
buffer(s). This strategy results in a
software receiver that always process
signal at the maximum processing
capacity, regardless of its input data
rate. Achieving real-time is only a
matter of executing the full receiver’s
processing chain in a processing
system powerful enough to sustain
the required processing load, but it
does not prevent from executing
exactly the same processing at a
slower pace, for example by reading

http://gnss-sdr.org/documentation/how-profile-code
http://gnss-sdr.org/documentation/how-profile-code
http://gnss-sdr.org/documentation/how-profile-code

AUDITOR D3.3 Version 1.1

 Page 12 (40)

samples from a file, in a less powerful
platform.

Possibility to use
different radio
frequency
front-ends.

-

AUDITOR’s software receiver
configuration system allows the
selection of UHD and OsmoSDR
compatible RF front-ends, in addition
to AUDITOR’s front-end.

Possibility to define
custom receiver
architectures.

- Implemented

Possibility to easily
define / interchange
implementations and
parameters for each
processing block.

-

AUDITOR’s software receiver
configuration system allows for an
unlimited number of block
implementations and number of
parameters for each particular
implementation.

Possibility to deploy
different receiver
architectures and
components.

- Implemented

Possibility to allow for
unit/component/integr
ation/system testing.

- Implemented

Possibility to be
executed in different
processing platforms
(mainframes, personal
computers, embedded
systems, etc).

-

AUDITOR’s software receiver building
system, based on CMake, currently
supports i386, x86_64/amd64, armhf
and arm64 processor architectures.

Flexible configuration
mechanism.

The software defined
receiver must be fully
configured in a single
file.
Configuration system
must be arbitrarily
extendable and easy to
use.
Allow possibility of
overriding parameters
via commandline flags.
Required
tools/dependencies
released under open
source license.

AUDITOR’s GNSS software defined
receiver follows a single-file
configuration strategy. Properties are
passed around within the program
using a configuration interface class.
Classes that need to read
configuration parameters will receive
instances of such interface class from
where they will fetch the values. The
name of these parameters can be
anything but one reserved word:
implementation. This parameter
indicates in its value the name of the
class that has to be instantiated by
the processing block factory for that
role. Since the configuration is just a
set of property names and values
without any meaning or syntax, the

AUDITOR D3.3 Version 1.1

 Page 13 (40)

system is very versatile and arbitrarily
extendable. Adding new properties to
the system only implies modifications
in the classes that will make use of
these properties. In addition, the
configuration files are not checked
against any strict syntax so it is always
in a correct status (as long as it
contains pairs of property names and
values in the INI format, see
https://en.wikipedia.org/wiki/INI_file)
For commandline flags management,
AUDITOR’s GNSS software defined
receiver relies on gflags (formerly
Google Commandline Flags), see
https://github.com/gflags/gflags.
Gflags is the commandline flags
library used within Google, and differs
from other libraries in that flag
definitions can be scattered around
the source code, and not just listed in
one place such as main(). In practice,
this means that a single source-code
file will define and use flags that are
meaningful to that file. Any
application that links in that file will
get the flags, and the gflags library will
automatically handle that flag
appropriately. There is significant gain
in flexibility, and ease of code reuse,
due to this technique. Gflags is
released under the BSD 3-clauses
license.

“Operation modes”
SIngle / dual band.
Second band selectable
from L2 and L5.

Implemented

GNSS Signals

Signal acquisition,
tracking, decoding of the
navigation message and
generation of code and
phase observables.

GPS L1 C/A

GPS L2C(M)

GPS L5

Galileo E1b/c

https://en.wikipedia.org/wiki/INI_file
https://github.com/gflags/gflags

AUDITOR D3.3 Version 1.1

 Page 14 (40)

Galileo E5a

Galileo E5b still not implemented.
Band not covered by the RF front-end.

Signal acquisition,
tracking, and decoding
of navigation message

EGNOS still not fully implemented.

RF frontend
drivers

The GNSS software
receiver must receive
data at an adequate
bandwidth and sampling
frequency.

AUDITOR’s RF front-end

USRP family

OsmoSDR-compatible

Input data types for raw
samples

AUDITOR’s GNSS
software defined
receiver must allow for
most usual input raw
sample data types (i.e.
bit length, integer and
floating point encodings)
delivered by available
GNSS radio-frequency
front-ends’ analog to
digital converters and
associated software
drivers.

AUDITOR’s raw sample data type

Reading samples represented by 2
bits (sign and magnitude).

Reading real (IF) samples represented
by 1 byte (8-bit signed integer)

Reading real (IF) samples represented
by 1 short (16-bit signed integer)

Reading real (IF) samples represented
by 1 float (32-bit floating point)

Reading I&Q (IF or baseband)
interleaved samples represented by 1
byte (8-bit signed integer)

Reading I&Q (IF or baseband)
interleaved samples represented by 1
short (16-bit signed integer)

Reading complex (baseband) samples
represented by 1 byte (8-bit signed
integer) each component.

Reading complex (baseband) samples
represented by 1 short (16-bit signed
integer) each component.

AUDITOR D3.3 Version 1.1

 Page 15 (40)

Reading complex (baseband) samples
represented by 1 float (32-bit floating
point) each component.

Output formats

The “output products”
of the GNSS software
defined receiver
(position, observables,
navigation data) must be
delivered in (preferably
open) standards in order
to maximize
interoperability with
other software
packages.

RINEX v2.11 and 3.02 file generation
(obs and nav). RINEX (Receiver
Independent Exchange Format) is an
interchange format for raw satellite
navigation system data, covering
observables and the information
contained in the navigation message
broadcast by GNSS satellites. This
allows the user to post-process the
received data to produce a more
accurate result (usually with other
data unknown to the original receiver,
such as better models of the
atmospheric conditions at time of
measurement).

RTCM SC-104 provides standards that
define the data structure for
differential GNSS correction
information for a variety of
differential correction applications.
Developed by the Radio Technical
Commission for Maritime Services
(RTCM), they have become an
industry standard for communication
of correction information. GNSS-SDR
implements RTCM version 3.2,
defined in [RTCM 10403.2].

NMEA 0183 is a combined electrical
and data specification for
communication between marine
electronics such as echo sounder,
sonars, anemometer, gyrocompass,
autopilot, GPS receivers and many
other types of instruments. It has
been defined by, and is controlled by,
the U.S. National Marine Electronics
Association. At the application layer,
the standard also defines the contents
of each sentence (message) type, so
that all listeners can parse messages
accurately. Those messages can be
sent through the serial port (that
could be for instance a Bluetooth link)
and be used/displayed by a number of
software applications such as gpsd,
JOSM, OpenCPN, and many others

http://www.rtcm.org/overview.php#Standards
http://www.nmea.org/
http://www.nmea.org/
http://www.catb.org/gpsd/
https://josm.openstreetmap.de/
http://opencpn.org/ocpn/

AUDITOR D3.3 Version 1.1

 Page 16 (40)

(and maybe running on other
devices).

GeoJSON is a geospatial data
interchange format based on
JavaScript Object Notation (JSON)
supported by numerous mapping and
GIS software packages, including
OpenLayers, Leaflet, MapServer,
GeoServer, GeoDjango,GDAL, and
CartoDB. It is also possible to use
GeoJSON with PostGIS and Mapnik,
both of which handle the format via
the GDAL OGR conversion library. The
Google Maps Javascript API v3 directly
supports the integration of GeoJSON
data layers, and GitHub also supports
GeoJSON rendering. Format
specification freely available at
http://geojson.org/geojson-spec.html

KML (Keyhole Markup Language) is an
XML grammar used to encode and
transport representations of
geographic data for display in an earth
browser. KML is an open standard
officially named the OpenGIS KML
Encoding Standard (OGC KML), and it
is maintained by the Open Geospatial
Consortium, Inc. (OGC). KML files can
be displayed in geobrowsers such as
Google Earth, Marble, osgEarth, or
used with the NASA World Wind SDK
for Java. Open standard freely
available at
http://www.opengeospatial.org/stand
ards/kml

UNIX-friendly

The binary file that
executes the software
receiver must be
system-wide installable.
Configuration files must
be in plain text format
and human-readable.
Executable must accept
commandline flags.

Implemented

Source code under a
version control system.

Available under open
source license.
Free public access to the
source code repository.

AUDITOR uses Git as a distributed
version control system and GitHub as
the Git server hosting service.
See https://github.com/gnss-sdr/gnss-
sdr

http://openlayers.org/
http://leafletjs.com/
http://www.mapserver.org/
http://geoserver.org/
https://www.djangoproject.com/
http://www.gdal.org/
https://cartodb.com/
http://postgis.net/
http://mapnik.org/
https://developers.google.com/maps/documentation/javascript/
https://developers.google.com/maps/documentation/javascript/examples/layer-data-simple
https://developers.google.com/maps/documentation/javascript/examples/layer-data-simple
https://github.com/blog/1528-there-s-a-map-for-that
https://github.com/blog/1528-there-s-a-map-for-that
http://geojson.org/geojson-spec.html
https://www.google.com/earth/
https://marble.kde.org/
http://osgearth.org/
http://worldwind.arc.nasa.gov/java/
http://worldwind.arc.nasa.gov/java/
http://www.opengeospatial.org/standards/kml
http://www.opengeospatial.org/standards/kml
https://github.com/gnss-sdr/gnss-sdr
https://github.com/gnss-sdr/gnss-sdr

AUDITOR D3.3 Version 1.1

 Page 17 (40)

Git is available under the GNU
General Public License v2.

Automated
documentation system.

Usable in C++, Python
and VHDL source code.
Available under open
source license, and in all
supported
environments.
Easily maintainable.

AUDITOR uses Doxygen
(http://www.stack.nl/~dimitri/doxyge
n/) the de facto standard tool for
generating documentation from
annotated C++ sources, but it also
supports other programming
languages such as C, Python, and
VHDL. The documentation is written
within code and is thus relatively easy
to keep up to date. Doxygen can cross
reference documentation and code,
so that the reader of a document can
easily refer to the actual code.
Doxygen can also visualize the
relations between the various
elements by means of include
dependency graphs, inheritance
diagrams, and collaboration diagrams,
which are all generated automatically.
Doxygen is highly portable and can
generate documentation in HTML and
PDF formats.
Available under GNU General Public
License v2.

Automated build
environments.

Provided by GitLab

(https://gitlab.com/gnss-sdr/gnss-sdr)

Availability of
“debugging modes” and
tools.

 Provided via CMake.

Static code analysis
Provided by Coverity Scan

(https://scan.coverity.com/)

Dynamic code analysis
Provided by Valgrind

(http://valgrind.org/)

Definition of a source
tree structure

Described in the README file at the

root of the source code tree.

Availability of a coding
style guide.

Coding guidelines and conventions
can be found at:
https://gnss-
sdr.org/documentation/coding-style

http://www.stack.nl/~dimitri/doxygen/
http://www.stack.nl/~dimitri/doxygen/
https://scan.coverity.com/
http://valgrind.org/
https://gnss-sdr.org/documentation/coding-style
https://gnss-sdr.org/documentation/coding-style

AUDITOR D3.3 Version 1.1

 Page 18 (40)

Supported processor
architectures

AUDITOR’s processor architecture

i386 processor architecture supported
by GNSS-SDR

x86_64 / amd64 processor
architecture supported by GNSS-SDR.

armhf processor architecture
supported by GNSS-SDR.

arm64 processor architecture
supported by GNSS-SDR.

Usage of a well-
established
building tool

Available for
all the supported
processor architectures,
and under an open
source license.

AUDITOR uses CMake
(https://cmake.org) as a building tool
for its GNSS software defined
receiver.
Available under BSD 3-Clause license.

Availability of software
package

AUDITOR’s software
defined receiver should
be easily built and
installed, ideally
requiring one single line
in the user terminal.

GNSS-SDR now forms part of Debian
and Ubuntu releases. In addition, the
software receiver is also available as a
Docker container. See
https://github.com/carlesfernandez/d
ocker-gnsssdr

Freely available,
industry-proven
software compilers.

Usable in the processor
architectures and
Operating Systems
described above.
Available under open
source license.

AUDITOR’s software defined receiver
can use GCC (available under the GNU
General Public License v3) and LLVM
(available under University of
Illinois/NCSA Open Source License)

Available for most
popular (Unix-based)
operating system
distributions.

AUDITOR’s software
defined receiver must
be compilable and
executable (including
the availability of all
required dependencies
in a given environment).

Debian 8 and above (32 and 64 bits)

Ubuntu 14.04 LTS and above (32 and
64 bits)

Linaro 15.03 and above

Apple’s Mac OS X 10.9 and above

Source code released
under an open license.

GNSS-SDR is released under the GNU
General Public License v3, as specified
in the COPYING file at the root of the
source code tree (as it is standard
practice in the discipline). It can be

https://cmake.org/
https://github.com/carlesfernandez/docker-gnsssdr
https://github.com/carlesfernandez/docker-gnsssdr
http://www.opensource.org/licenses/UoI-NCSA.php
http://www.opensource.org/licenses/UoI-NCSA.php

AUDITOR D3.3 Version 1.1

 Page 19 (40)

checked online at
https://github.com/gnss-sdr/gnss-sdr

Unique identifier for
source code snapshots.

Every single change in
the source tree (either
on the reference
development branch or
in any other) must be
uniquely identified and
retrievable, keeping an
annotated history of
source code evolution.

Git assigns a 40 character-long
identifier to every revision (i.e,
specific snapshot of the status of
every single file present in the
repository), which is the output of the
SHA-1 algorithm applied to a set of
information required to recreate the
full source tree. Hence, every single
bit change in the source code is
registered by Git, with the added
benefit of integrity over the source
code identification.

Availability of a Digital
Object Identifier for
GNSS-SDR releases

Automated and
persistent DOI
assignment to GNSS-SDR
stable releases.

Every new release of GNSS-SDR will
obtain a new DOI. Automated DOI
assignment already set-up, service
freely provided by ZENODO and
GitHub.

Quasi-linear
acceleration with the
number of cores/
processors

-

Achieved. See:

C. Fernández-Prades, J. Arribas and P.

Closas, “Accelerating GNSS Software

Receivers”, in Proceedings of the 29th

International Technical Meeting of The

Satellite Division of the Institute of

Navigation (ION GNSS+ 2016),

Portland, OR, Sept. 2016, pp. 44-61.

Arbitrarily scalable
receiver’s software
architecture.

- Achieved. See:

C. Fernández-Prades, J. Arribas and P.

Closas, “Accelerating GNSS Software

Receivers”, in Proceedings of the 29th

International Technical Meeting of The

Satellite Division of the Institute of

Navigation (ION GNSS+ 2016),

Portland, OR, Sept. 2016, pp. 44-61.

Arbitrarily scalable
configuration system.

- See indicator “Flexible configuration
mechanism.”

Logging system

Possibility to set up
severity levels and
verbose modes for
messages.

AUDITOR uses Google Glog, Google’s
C++ logging system (see
https://github.com/google/glog). It
provides simple yet powerful APIs to
various log events in the program.

https://github.com/gnss-sdr/gnss-sdr
https://github.com/google/glog

AUDITOR D3.3 Version 1.1

 Page 20 (40)

Possibility to set up
conditional / occasional
logging.
Available under open
source license and for all
supported platforms

Messages can be logged by severity
level, and the users can control
logging behaviour from the command
line, log based on conditionals, abort
the program with stack trace when
expected conditions are not met, and
introduce their own verbose logging
levels. Available under BSD 3-clause
license.

Unit test software
framework

Test should be easy to
write for programmers,
letting test writers to
focus on the test
content.
Test should be easy to
read for programmers.
Test should be order
independent.
Test should be
deterministic.
Test should be
versionable.
Test should be
automatic.
Tests should be
independent and
repeatable.
Tests should be well
organized and reflect
the structure of the
tested code.
Tests should be portable
and reusable.
When tests fail, they
should provide as much
information about the
problem as possible.
Tests should be fast (less
than 5-10 minutes) to
execute.
Testing framework
available under open
source license, and in all
the supported
environments.

AUDITOR uses Google Test, Google's
C++ test framework
(https://github.com/google/googletes
t), which meets all the required
features.
Available under BSD 3-clause license.

Public source code
repository

● Freely accessible.

● Robust hosting

service.

● Management tools.

● Bug tracking system.

Available at

https://github.com/gnss-sdr/gnss-

sdr.git

https://github.com/google/googletest
https://github.com/google/googletest
https://github.com/gnss-sdr/gnss-sdr.git
https://github.com/gnss-sdr/gnss-sdr.git

AUDITOR D3.3 Version 1.1

 Page 21 (40)

● Allowing automated

building and other

hooks on new code

changes.

Communication
channels

Public mailing list

Public mailing list at

https://sourceforge.net/projects/gnss

-sdr/lists/gnss-sdr-developers

Documentation for
users

Howtos, tutorials.
Documentation is a
never-ending process
that continually gets
feedback from users.

Available at https://gnss-sdr.org

Documentation for
developers

Identification of a
source-code based
automated
documentation tool.
Documentation is a
never-ending process
that continually gets
feedback from users.

AUDITOR uses Doxygen as the
automated source code
documentation tool.
Doxygen is free software, released
under the terms of the GNU General
Public License. In-code
documentation, presented in an
ordered manner and generated
automatically, helps to keep an
updated version of the source code
manual.

https://sourceforge.net/projects/gnss-sdr/lists/gnss-sdr-developers
https://sourceforge.net/projects/gnss-sdr/lists/gnss-sdr-developers
https://gnss-sdr.org/

AUDITOR D3.3 Version 1.1

 Page 22 (40)

2. Validation of GNSS RF Front-End Module

In D3.1 the design and implementation of the FE architecture defined in D2.2 was introduced. The FE

architecture was based on a dual channel configuration, with one fixed band (L1/E1) and one

configurable band (L2 or E5a/L5).

The initial architecture implemented in the first prototype, FE v1.0, was upgraded to a second

implementation, FE v2.0, which mitigated several issues related to EMI and in-band spurious.

In D6.2 different integration/validation tests were executed using FE v2.0, with a set of representative

inputs signals (simple tones, modulated signals, GPS outdoor signals), in different environments

(laboratory, outdoor). These tests identified several issues related to microcontroller noise

interferences in the RF signal, clock stability, and minor in-band spurious. In order to mitigate these

issues three different setups were defined:

● Setup #1: original FE architecture already presented in D3.1/D6.1.

● Setup #2: setup #1 downgraded from the external 8-bit DAC to the internal 2-bit per I/Q signal

to reduce noise in the digitalization process.

● Setup #3: setup #2 with external clock reference to test different high stability clocks.

Several outdoor captures were carried out with Setup #3 which were successfully processed using the

GNSS-SDR offline implementation as shown in D6.2.

An additional setup was implemented based on new transceiver which offered improved performance

and higher flexibility for multi-band GNSS data acquisition.

AUDITOR D3.3 Version 1.1

 Page 23 (40)

3. Validation of the software-defined GNSS receiver

3.1 Signal Tracking

The performance of the signal tracking module is validated by using specific unit tests for the selected

modules. The unit test framework uses an open-source software-defined GPS L1 CA signal generator

that produces a complete constellation of GPS satellites plus a controlled Gaussian noise. The Carrier-

to-Noise ratio (CN0) can be adjusted programmatically.

In addition, the signal generator produces also a metadata file containing the true synchronization

parameters for the generated signal and its evolution along time. The unit test uses this file to compute

KPIs for all the tracking products.

The signal tracking process implies two steps:

- Tracking pull-in: is the signal tracking initial transitory that absorbs the Doppler and Code Delay

estimation errors from the signal acquisition module [ref Kaplan]. The tracking capture margin

is defined as the Doppler error window expressed in Hertz and the Code Delay error window,

expressed in Chips, that converges to a stable tracking and not produces a loss-of-lock. Usually

depends on the PLL and DLL bandwidths respectively.

- Steady-state: the tracking errors have been stabilized to its nominal values and its performance

for the selected PLL/DLL bandwidths depend only on the CN0 and the satellite and receiver

dynamics.

3.2 Tracking pull-in test

It is coded using the Google Test framework and included in the main run_tests executable with the

test name GpsL1CADllPllTrackingPullInTest. The GNSS-SDR module under test is the generic

dll_pll_veml_tracking engine, configured to track GPS L1 CA signals. It can make use of the software-

defined signal generator to produce GPS L1 CA signals at different CN0 and obtain the true

synchronization parameters. The test performs a two-dimensional sweep of Doppler errors and Code

Delay errors for each CN0 to emulate an imperfect signal acquisition in the pull-in tracking step. The

test output is a 2D grid plot showing those combinations of Doppler and Code delay errors that

produced a valid tracking (green dots) and those that produced a loss of lock (black dots).

3.2.1 Test results

This test accepts the following flags:

Table 3.1: Tracking pull-in test flags

Flag Default value Description

fs_gen_sps 2600000 Sampling rate, in Samples/s

enable_external_signal_file false Use an external signal file capture instead of the

software-defined signal generator. NOTICE:

when external file is selected, the test will try to

perform a high sensitivity acquisition with an

enhanced Doppler estimation to estimate the

AUDITOR D3.3 Version 1.1

 Page 24 (40)

true signal synchronization parameters for all the

satellites present in the signal

signal_file signal_out.bin Path of the external signal capture file, must be

in int8_t format. If set, the signal generator will

not be used and no CN0 sweep will be done.

disable_generator false Disable the signal generator (the pre-generated

signal file set must be available for the test, i.e.

by running the test without disabling the

generator previously).

duration 100 Duration of the experiment [in seconds, max =

300]. For this test the recommended signal

duration is 4 seconds.

test_satellite_PRN 1 PRN of the satellite under test (must be visible

during the observation time).

acq_Doppler_error_hz_start 1000 Acquisition Doppler error start sweep value [Hz]

acq_Doppler_error_hz_stop -1000 Acquisition Doppler error stop sweep value [Hz]

acq_Doppler_error_hz_step -50 Acquisition Doppler error sweep step value [Hz]

acq_Delay_error_chips_start 2.0 Acquisition Code Delay error start sweep value

[Chips]

acq_Delay_error_chips_stop -2.0 Acquisition Code Delay error stop sweep value

[Chips]

acq_Delay_error_chips_step -0.1 Acquisition Code Delay error sweep step value

[Chips]

PLL_bw_hz_start 40.0 PLL Wide configuration value [Hz]

DLL_bw_hz_start 1.5 DLL Wide configuration value [Hz]

extend_correlation_symbols 1 Set the tracking coherent correlation to N

symbols (up to 20 for GPS L1 C/A)

PLL_narrow_bw_hz 5.0 PLL Narrow configuration value [Hz]

DLL_narrow_bw_hz 0.75 DLL Narrow configuration value [Hz]

CN0_dBHz_start (noise

disabled)

Enable noise generator and set the CN0 start

sweep value [dB-Hz]

CN0_dBHz_stop (noise

disabled)

Enable noise generator and set the CN0 stop

sweep value [dB-Hz]

CN0_dB_step 3.0 Noise generator CN0 sweep step value [dB]

plot_detail_level 0 Specify the desired plot detail (0,1,2): 0 -

Minimum plots (default) 2 - Plot all tracking

parameters.

AUDITOR D3.3 Version 1.1

 Page 25 (40)

show_plots true Shows plots on screen. Set it to false for non-

interactive testing.

Example of test execution command line:

$../install/run_tests --gtest_filter=GpsL1CADllPllTrackingPullInTest* --

plot_detail_level=0 --duration=5 --CN0_dBHz_start=45 --CN0_dBHz_stop=30 --

PLL_bw_hz_start=35 --DLL_bw_hz_start=1.5 --disable_generator=0 --

enable_external_signal_file=0 --acq_Doppler_error_hz_start=1000 --

acq_Doppler_error_hz_stop=-1000 --acq_Delay_error_chips_start=2 --show_plots=true --

acq_Delay_error_chips_stop=-2 --test_satellite_PRN=1

Test output:

Figure 3.1: Tracking pull-in results for CN0= 45 dB-Hz using PLL/DLL bandwidths of 35 Hz and 1.5 Hz

respectively.

Figure 3.2: Tracking pull-in results for CN0= 42 dB-Hz using PLL/DLL bandwidths of 35 Hz and 1.5 Hz

respectively.

AUDITOR D3.3 Version 1.1

 Page 26 (40)

Figure 3.3: Tracking pull-in results for CN0= 39 dB-Hz using PLL/DLL bandwidths of 35 Hz and 1.5 Hz

respectively.

Figure 3.4: Tracking pull-in results for CN0= 36 dB-Hz using PLL/DLL bandwidths of 35 Hz and 1.5 Hz

respectively.

AUDITOR D3.3 Version 1.1

 Page 27 (40)

Figure 3.5: Tracking pull-in results for CN0= 33 dB-Hz using PLL/DLL bandwidths of 35 Hz and 1.5 Hz

respectively.

The tracking pull in test results show that the GPS L1 CA tracking pull-in tolerates a Doppler error of [-

250 to 250] Hz in a signal CN0 range of [45 to 33] dB-Hz, thus, the acquisition Doppler grid granularity

of 500 Hz or narrower should work.

The Code Delay error tolerance on the other hand is reduced from [-1.5 to 1.0] Chips at 45 dB-Hz to [-

0.85, 0.85] Chips in at 33 dB-Hz. The acquisition engine uses a parallel code search algorithm that

provides an estimation of the signal Code Delay with suitable precision to enable the signal tracking at

33 dB-Hz, as shown in previous section.

3.3 Tracking steady-state test

The tracking steady-state test uses the signal generator metadata file to provide a “perfect” signal

acquisition’s synchronization parameters to the tracking module. This procedure eliminates the pull-

in transitory effect, thus it obtains the tracking errors and its performance in the estimation of the

signal synchronization parameters for different tracking loops bandwidths and signal CN0.

The performance bounds of a PLL/DLL algorithm are defined hereafter.

3.3.1 CRB for the Code Delay

One satellite received complex baseband signal model

 x(t)=as(t−τ)exp{j2πf
d
t}+n(t) (1)

with s(t) the transmitted complex baseband low-rate navigation signal spread by the pseudorandom

code, a its complex amplitude, τ the time-delay, f
d
 the Doppler shift and n(t) is zero-mean additive

Gaussian noise with variance σ2,n.

The CRB states that for any unbiased estimate of a generic real-valued parameter vector ξ, the

covariance matrix of the estimates C(̂ξ) is bounded as

AUDITOR D3.3 Version 1.1

 Page 28 (40)

 (2)

where J(ξ) is the Fisher information matrix (FIM). The elements of the fim are defined as

 (3)

In our case, the parameter to be estimated is ξ=τ, and the FIM is computed as

 (4)

with d(t)=s(t−τ)exp{j2πf
d
t}. The partial derivative of d(t) is

 (5)

where ̇s(t) is the derivative of time of the waveform s(t). Then

 (6)

because with T
d
 the integration time, and the derivative of time results in a product

on f in frequency. G(f) is the power spectral density of the waveform, which depends on the

GNSS signal. Finally, we have that

 (7)

We have that (T
c
 the chip period)

(8)

Taking into account that we use a coherent early-late time-delay detector (discriminator), the

lower bound (LB) is given by

 (9)

with β the precorrelation bandwidth and B
L
 the DLL bandwidth.

AUDITOR D3.3 Version 1.1

 Page 29 (40)

3.3.2 Test results

This test accepts the following flags:

Table 3.2: Tracking steady-state test

Flag Default value Description

fs_gen_sps 2600000 Sampling rate, in Samples/s

enable_external_signal_file false Use an external signal file capture instead of the

software-defined signal generator. NOTICE: when

external file is selected, the test will try to perform

a high sensitivity acquisition with an enhanced

Doppler estimation to estimate the true signal

synchronization parameters for all the satellites

present in the signal

signal_file signal_out.bin Path of the external signal capture file, must be in

int8_t format. If set, the signal generator will not be

used and no CN0 sweep will be done

disable_generator false Disable the signal generator (the pre-generated

signal file set must be available for the test, i.e. by

running the test without disabling the generator

previously).

duration 100 Duration of the experiment [in seconds, max = 300].

For this test the recommended signal duration is 4

seconds.

test_satellite_PRN 1 PRN of the satellite under test (must be visible

during the observation time).

PLL_bw_hz_start 40.0 PLL Wide configuration start sweep value [Hz]

PLL_bw_hz_stop 40.0 PLL Wide configuration stop sweep value [Hz]

PLL_bw_hz_step 5.0 PLL Wide configuration sweep step value [Hz]

DLL_bw_hz_start 1.5 DLL Wide configuration start sweep value [Hz]

DLL_bw_hz_stop 1.5 DLL Wide configuration stop sweep value [Hz]

DLL_bw_hz_step 0.25 DLL Wide configuration sweep step value [Hz]

extend_correlation_symbols 1 Set the tracking coherent correlation to N symbols

(up to 20 for GPS L1 C/A)

PLL_narrow_bw_hz 5.0 PLL Narrow configuration value [Hz]

DLL_narrow_bw_hz 0.75 DLL Narrow configuration value [Hz]

CN0_dBHz_start (noise

disabled)

Enable noise generator and set the CN0 start sweep

value [dB-Hz]

AUDITOR D3.3 Version 1.1

 Page 30 (40)

CN0_dBHz_stop (noise

disabled)

Enable noise generator and set the CN0 stop sweep

value [dB-Hz]

CN0_dB_step 3.0 Noise generator CN0 sweep step value [dB]

skip_trk_transitory_s 1.0 Skip the initial tracking output observables to avoid

transitory results [s]. It is especially important when

the extend_correlation_symbols is set to >1, in

order to skip the symbol synchronization transitory.

plot_detail_level 0 Specify the desired plot detail (0,1,2): 0 - Minimum

plots (default) 2 - Plot all tracking parameters.

show_plots true Shows plots on screen. Set it to false for non-

interactive testing.

Example of test execution command line:

./run_tests --gtest_filter=GpsL1CADllPllTrackingTest* --duration=200 --CN0_dBHz_start=50 --

CN0_dBHz_stop=25 --PLL_bw_hz_start=5 --PLL_bw_hz_stop=5 --DLL_bw_hz_start=0.25 --

DLL_bw_hz_stop=0.25 --DLL_bw_hz_step=0.25 --disable_generator=1 --plot_detail_level=0 --

plot_gps_l1_tracking_test=1 --fs_gen_sps=4000000 --skip_trk_transitory_s=135 --

PLL_narrow_bw_hz=1.0 --DLL_narrow_bw_hz=0.1 --extend_correlation_symbols=1

Test output:

Figure 3.6: Tracking Doppler estimation error and variance for PLL/DLL bandwidths of 5 Hz and 0.25

Hz respectively.

AUDITOR D3.3 Version 1.1

 Page 31 (40)

Figure 3.7: Accumulated carrier phase estimation error and variance for PLL/DLL bandwidths of 5

Hz and 0.25 Hz respectively.

Figure 3.8: Code Phase estimation error and variance for PLL/DLL bandwidths of 5 Hz and 0.25 Hz

respectively.

AUDITOR D3.3 Version 1.1

 Page 32 (40)

Figure 3.9: Measured RMSE and corresponding Cramér-Rao Bound for the Code Delay estimation.

The PLL filter was set to 1 Hz for Tint=20 ms and 10 Hz for Tint=1 ms.

AUDITOR D3.3 Version 1.1

 Page 33 (40)

4. Analysis of main Key Performance Indicators

This Section summarizes the main achievements of the AUDITOR Project in the KPIs identified in

Deliverable 1.3.

Table 4.1: KPI 1 - Accuracy

KPI KPI 1 - Position accuracy

Definition of
KPI

Degree of correctness of the position fixes provided by the GNSS receiver.

Metrics Position accuracy results are given in meters of error with respect to a reference
(fiducial) point previously measured in a geodetic survey. Two of the most
commonly used confidence measurements for positioning are the Distance Root
Mean Square (DRMS) and the Circular Error Probability (CEP), for 2D positioning;
and the Mean Radial Spherical Error (MRSE) and the Spherical Error Probable
(SEP) when measures are expressed in 3D. Measurement procedures defined in
https://gnss-sdr.org/design-forces/accuracy/

AUDITOR’s
achievements

Test programs computing the metrics mentioned above have been
implemented (see https://gnss-sdr.org/docs/tutorials/testing-software-
receiver-2/)

The accuracy of the standalone GNSS receiver has improved from a rough 100-
m positioning at the starting of the Project to the order of 1 meter SEP in good
satellite visibility conditions. The user can choose among Single-point and PPP-
based PVT solutions.

Table 4.2: KPI 2 - Availability

KPI KPI 2 – Availability

Definition of KPI The availability of a navigation system is the percentage of time that the services
of the system are usable by the navigator.

Metrics Several specific tests for measuring receiver’s availability were proposed in
https://gnss-sdr.org/design-forces/availability/

AUDITOR’s
achievements

The availability of the standalone GNSS receiver has improved from a six hours
at the starting of the Project to a continued service (delivering PVT fixes
continuously, measured for more than one week).

Table 4.3: KPI 3 - Efficiency

KPI KPI 3 - Efficiency

https://gnss-sdr.org/design-forces/accuracy/
https://gnss-sdr.org/docs/tutorials/testing-software-receiver-2/
https://gnss-sdr.org/docs/tutorials/testing-software-receiver-2/
https://gnss-sdr.org/design-forces/availability/

AUDITOR D3.3 Version 1.1

 Page 34 (40)

Definition of KPI Number of concurrent channels (understood as the number of different GNSS
satellites that can be tracked per GNSS signal, including GPS L1 C/A, GPS L2C,
GPS L5, Galileo E1 OS, Galileo E5a, Galileo E5b, and EGNOS) can be sustained in
real time for a given processing platform.

Metrics In the software-defined GNSS receiver, the number of channels per signal is a
configuration parameter. This number can be increased progressively until
reaching a processing load that the executing platform is unable to deliver in
real time. Measurement procedures defined in https://gnss-sdr.org/design-
forces/efficiency/

AUDITOR’s
achievements

Relevant advances in execution time optimization (see reference above), both
in personal computers and in FPGA-based devices. The AUDITOR receiver
attains real time with 8 channels per GNSS signal (GPS L1, Galileo E1 OS, GPS
L2C / GPS L5 + Galileo E5a).

Table 4.4: KPI 4 - Interoperability

KPI KPI 4 - Interoperability

Definition of KPI Number of GNSS signals that AUDITOR’s software receiver is able to process, and
the number of standard output formats for the products of GNSS signal
processing.

Metrics Specific interoperability issues are discussed in https://gnss-sdr.org/design-
forces/interoperability/

AUDITOR’s
achievements

The software receiver is now able to generate GNSS products from GPS L1 C/A,
Galileo E1 OS, GPS L2C, GPS L5 and Galileo E5a in standard formats: RTCM 3.2
and RINEX 3.01 for observables and navigation data, and KML, GPX and NMEA-
0183 for GIS tools. Intermediate signals are available in binary .mat format,
readable from Matlab, Octave and Python.

Table 4.5: KPI 5 - Repeatability

KPI KPI 5 - Repeatability

Definition of
KPI

Consistency of the position fixes delivered by the GNSS software receiver.

Metrics Position precision results can be statistically characterized by averaging the
results of repeated experiments performed on the same position or trajectory.
Two of the most commonly used confidence measurements for positioning are
the Distance Root Mean Square (DRMS) and the Circular Error Probability (CEP),
for 2D positioning; and the Mean Radial Spherical Error (MRSE) and the
Spherical Error Probable (SEP) when measures are expressed in 3D.
Measurement procedures discussed in https://gnss-sdr.org/design-
forces/repeatability/

https://gnss-sdr.org/design-forces/efficiency/
https://gnss-sdr.org/design-forces/efficiency/
https://gnss-sdr.org/design-forces/interoperability/
https://gnss-sdr.org/design-forces/interoperability/
https://gnss-sdr.org/design-forces/repeatability/
https://gnss-sdr.org/design-forces/repeatability/

AUDITOR D3.3 Version 1.1

 Page 35 (40)

AUDITOR’s
achievements

Test programs computing the metrics mentioned above have been
implemented (see https://gnss-sdr.org/docs/tutorials/testing-software-
receiver-2/)

The precision of the standalone GNSS receiver has improved from 2 m SEP
positioning at the starting of the Project to the order of 20 cm SEP in good
satellite visibility conditions.

https://gnss-sdr.org/docs/tutorials/testing-software-receiver-2/
https://gnss-sdr.org/docs/tutorials/testing-software-receiver-2/

AUDITOR D3.3 Version 1.1

 Page 36 (40)

5. Conclusion

The AUDITOR Project has achieved to deliver:

1) A proof-of-concept of the AUDITOR concept for high-precision accuracy for the agriculture.

2) A free and open source software-defined GNSS receiver available to the general public.

The main improvements in the software receiver developed during AUDITOR can be summarized as
follows:

Improvements in Accuracy:

• Part of the RTKLIB core library has been integrated into GNSS-SDR. There is now a single PVT
block implementation which makes use of RTKLIB to deliver PVT solutions, including Single
and PPP navigation modes.

• Fixed CN0 estimation for other correlation times than 1 ms.

• Improved computation of tracking parameters and GNSS observables.

• Major rewriting in the generation of pseudoranges.

Improvements in Availability:

• Internal Finite State Machines rewritten for improved continuity in delivering position fixes.
This fixes a bug that was stalling the receiver after about six hours of continuous operation.

• Redesign of the time counter for enhanced continuity.

• Improved flow graph in multisystem configurations: the receiver does not get stalled
anymore if no signal is found from the first system.

• Improved acquisition and tracking sensitivity.

Improvements in Efficiency:

• Added the possibility of non-blocking acquisition, which works well when using real-time
data from an RF front-end.

• Improved flow graph in multiband configurations: satellites acquired in one band are
immediately searched in others.

• Complex local codes have been replaced by real codes, alleviating the computational burden.

• Improvements in processing speed: The VOLK_GNSSSDR library has been rewritten, following
current VOLK standards and adding a number of new kernels. This approach addresses both
efficiency and portability. Now the library provides the key kernels for GNSS signal processing
in 16ic and 32fc versions, including SSE2, SSE3, SSE4.1, AVX, AV2 and NEON implementations.

• Improvements in C++ usage: Use of const container calls when result is immediately
converted to a const iterator. Using these members removes an implicit conversion from
iterator to const_iterator.

Improvements in Flexibility:

• A number of new parameters have been exposed to the configuration system.

• Possibility to choose Pilot or Data component for tracking of GPS L5 and Galileo E5a signals.

• Enabled extended coherent integration times.

AUDITOR D3.3 Version 1.1

 Page 37 (40)

• Some configuration parameters can now be overridden by commandline flags for easier use
in scripts.

Improvements in Interoperability:

• Added the GPS L5 receiver chain.

• Added the GLONASS L1 SP receiver chain.

• Added the GLONASS L2 SP receiver chain.

• Improvements in the Galileo E5a and GPS L2C receiver chains.

• Updated list of available GNSS satellites.

• Added five more signal sources: "Fmcomms2_Signal_Source" (requires gr-iio),
"Plutosdr_Signal Source" (requires gr-iio), "Spir_GSS6450_File_Signal_Source",
"Labsat_Signal_Source" and "Custom_UDP_Signal_Source" (requires libpcap). Documented
in https://gnss-sdr.org/docs/sp-blocks/signal-source/

• Improved support for BladeRF, HackRF and RTL-SDR front-ends.

• Added tools for the interaction with front-ends based on the AD9361 chipset.

• Intermediate results are now saved in .mat binary format, readable from Matlab/Octave and
from Python via h5py.

• Added a RTCM printer and TCP server in PVT blocks. The receiver is now able to stream data
in real time, serving RTCM 3.2 messages to multiple clients. For instance, it can act as a Ntrip
Source feeding a Ntrip Server, or to be used as data input in RTKLIB, obtaining Precise Point
Positioning fixes in real-time. The TCP port, Station ID, and rate of MT1019/MT1045 and
MSM can be configured. GPS_L1_CA_PVT serves MT1019 (GPS Ephemeris) and MSM7
(MT1077, full GPS pseudoranges, phase ranges, phase range rates and CNR - high resolution)
messages, while GALILEO_E1_PVT serves MT1045 (Galileo ephemeris) and MSM7 (MT1097,
full Galileo pseudoranges, phase ranges, phase range rates and CNR - high resolution).

• Added a GeoJSON printer. Basic (least-squares) position fixes can be now also stored in this
format, in addition to KML.

• Added the GPX output format.

• Fixed a bug in the format of NMEA sentences when latitude or longitude minutes were >10.

• Improvements in the correctness of generated RINEX files.

Improvements in Maintainability:

• Setup of a Continuous Integration system that checks building and runs QA code in a wide
range of GNU/Linux distributions (ArchLinux, CentOS, Debian, Fedora, OpenSUSE, Ubuntu)
and releases. See https://gitlab.com/gnss-sdr/gnss-sdr

• Creation of multi-system processing blocks, drastically reducing code duplication and
maintainability time.

• Automated code formatting with clang-format. This tool is widely available and easy to
integrate into many code editors, and it also can be used from the command line. It cuts time
spent on adhering to the project's code formatting style.

• Improvement in C++ usage: C-style casts have been replaced by C++ casts. C-style casts are
difficult to search for. C++ casts provide compile time checking ability and express
programmers' intent better, so they are safer and clearer.

• Improvement in C++ usage: The override special identifier is now used when overriding a
virtual function. This helps the compiler to check for type changes in the base class, making
the detection of errors easier.

• Improvement in C++ usage: A number of unused includes have been removed. Order of
includes set to: local (in-source) headers, then library headers, then system headers. This
helps to detect missing includes.

https://gnss-sdr.org/docs/sp-blocks/signal-source/
https://gitlab.com/gnss-sdr/gnss-sdr

AUDITOR D3.3 Version 1.1

 Page 38 (40)

• Improvement in C++ usage: Enhanced const correctness. Misuses of those variables are
detected by the compiler.

Improvements in Marketability:

• Reduced time from a commit to deployment (see virtualization mechanisms in Portability).

Improvements in Portability:

• Now GNSS-SDR can be run in virtual environments through snap packages (see
https://github.com/carlesfernandez/snapcraft-sandbox) and docker images (see
https://github.com/carlesfernandez/docker-gnsssdr).

• Now GNSS-SDR is adapted to cross-compiling environments for embedded devices (see
https://gnss-sdr.org/docs/tutorials/configuration-options-building-time/ and
https://github.com/carlesfernandez/oe-gnss-sdr-manifest).

• Several CMake scripts improvements, more verbose outputs in case of errors. Building
configuration has been documented in https://gnss-sdr.org/docs/tutorials/configuration-
options-building-time/

• Improved SDK for cross-compilation in embedded devices. Documented in https://gnss-
sdr.org/docs/tutorials/cross-compiling/

• Improved control over minimum required versions for core dependencies.

• The software builds with C++11, C++14 and C++17 standards.

• The software can now be built using GCC >= 4.7.2 or LLVM/Clang >= 3.4.0 compilers on
GNU/Linux, and with Clang/AppleClang on MacOS.

• The Ninja build system can be used in replacement of make.

• The volk_gnsssdr library can be built using Python 2.7 or Python 3.6.

• The volk_gnsssdr library is now ready for AArch64 NEON instructions.

• Ready for GNU Radio 3.8 C++ API (as per current next branch of GNU Radio upstream
repository).

• Improved detection of required and optional dependencies in many GNU/Linux distributions
and processor architectures.

• Improvement in C++ usage: The <ctime> library has been replaced by the more modern and
portable <chrono>.

• Improvement in C++ usage: The <stdio.h> library has been replaced by the more modern and
portable <fstream> for file handling.

• Improvement in C++ usage: C++ libraries preferred over C libraries (e.g., <cctype> instead of
<ctype.h>, <cmath> instead of <math.h>).

• Fixes required by Debian packaging.

• Fixes required by Macports packaging.

Improvements in Reliability:

• Introduced 3 new Input Filter implementations for pulsed and narrowband interference
mitigation: `Pulse_Blanking_Filter`, `Notch_Filter` and `Notch_Filter_Lite`. Documented in
https://gnss-sdr.org/docs/sp-blocks/input-filter/

• Improved flow graph stabiliy.

• Introduction of high-integrity C++ practices into the source code and included in the coding
style guide. See https://gnss-sdr.org/coding-style/

• Fixed a number of defects detected by Coverity Scan.

• Improvement in C++ usage: rand() function replaced by <random> library.

https://github.com/carlesfernandez/snapcraft-sandbox
https://github.com/carlesfernandez/docker-gnsssdr
https://gnss-sdr.org/docs/tutorials/configuration-options-building-time/
https://github.com/carlesfernandez/oe-gnss-sdr-manifest
https://gnss-sdr.org/docs/tutorials/configuration-options-building-time/
https://gnss-sdr.org/docs/tutorials/configuration-options-building-time/
https://gnss-sdr.org/docs/tutorials/cross-compiling/
https://gnss-sdr.org/docs/tutorials/cross-compiling/
https://gnss-sdr.org/docs/sp-blocks/input-filter/
https://gnss-sdr.org/coding-style/

AUDITOR D3.3 Version 1.1

 Page 39 (40)

• Improvement in C++ usage: strlen and strncpy have been replaced by safer C++ counterparts.

• Improvement in C++ usage: Some destructors have been fixed, avoiding segmentation faults
when exiting the program.

• Website switched from http to https. Links in the source tree switched when available.

Improvements in Reproducibility:

• Setup of a Continuous Reproducibility system at GitLab for the automatic reproduction of
experiments. The concept was introduced in
https://ieeexplore.ieee.org/document/8331069/ Example added in the
src/utils/reproducibility/ieee-access18/ folder.

• Fixes of Lintian warnings related to build reproducibility.

Improvements in Scalability:

• Improvements in receiver design: Internal block communication has been redesigned to
accommodate the addition of new signals, and now upstream and downstream
communication within blocks is implemented through the GNU Radio block’s asynchronous
message passing system, leading to a more scalable, more robust and cleaner design.

• Improvements in multi-system, multi-band receiver configurations. The receiver now accepts
any number of channels and systems in the three available bands.

• All possible combinations of signals and integration times are now accepted by the
Observables block.

Improvements in Testability:

• Major QA source code refactoring: they have been split into src/tests/unit-tests and
src/tests/system-tests folders. They are optionally built with the ENABLE_UNIT_TESTING=ON
(unit testing QA code), ENABLE_UNIT_TESTING_EXTRA=ON (unit tests that require extra files
downloaded at configure time), ENABLE_SYSTEM_TESTING=ON (system tests, such as
measurement of Time-To-First-Fix) and ENABLE_SYSTEM_TESTING_EXTRA=ON (extra system
test requiring external tools, automatically downloaded and built at building time)
configuration flags. The EXTRA options also download and build a custom software-defined
signal generator and version 2.9 of GPSTk, if not already found on the system. Download and
local link of version 2.9 can be forced by ENABLE_OWN_GPSTK=ON building configuration
flag. Only ENABLE_UNIT_TESTING is set to ON by default.

• Several Unit Tests added. Documentation of testing concepts and available tests at
https://gnss-sdr.org/docs/tutorials/testing-software-receiver/

• Receiver channels can now be fixed to a given satellite.

• Improved CTest support in volk_gnsssdr.

Improvements in Usability:

• All Observables block implementations have been merged into a single implementation for
all kinds of GNSS signals, making it easier to configure.

• All PVT block implementations have been merged into a single implementation for all kinds
of GNSS signals, making it easier to configure.

• Misleading parameter name GNSS-SDR.internal_fs_hz has been replaced by GNSS-
SDR.internal_fs_sps. The old parameter name is still read. If found, a warning is provided to
the user.

https://ieeexplore.ieee.org/document/8331069/
https://gnss-sdr.org/docs/tutorials/testing-software-receiver/

AUDITOR D3.3 Version 1.1

 Page 40 (40)

• Updated and improved documentation of processing blocks at https://gnss-sdr.org/docs/sp-
blocks/

• Improved documentation of required dependency packages in several GNU/Linux
distributions.

• Parameter names with the same role have been harmonized within different block
implementations.

• Added a changelog, a code of conduct, a contributing guide and a pull-request template in
the source tree.

• Added colors to the commandline user interface.

• Updated manfiles.

See the definitions of concepts and metrics at https://gnss-sdr.org/design-forces/

The source code is publicly available at https://github.com/gnss-sdr/gnss-sdr

https://gnss-sdr.org/docs/sp-blocks/
https://gnss-sdr.org/docs/sp-blocks/
https://gnss-sdr.org/design-forces/
https://github.com/gnss-sdr/gnss-sdr

